Springer Theses - Automating Data-Driven Modelling of Dynami ... - cover

Springer Theses - Automating Data-Driven Modelling of Dynami ...

Dhruv Khandelwal

  • 03 februari 2022
  • 9783030903435
Wil ik lezen
  • Wil ik lezen
  • Aan het lezen
  • Gelezen
  • Verwijderen

Samenvatting:

This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user’s perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.

We gebruiken cookies om er zeker van te zijn dat je onze website zo goed mogelijk beleeft. Als je deze website blijft gebruiken gaan we ervan uit dat je dat goed vindt. Ok